Inorganica Chimica Acta, 56 (1981) L77-L78 @ Elsevier Sequoia S.A., Lausanne - Printed in Switzerland

Electron Transfer in Iron Hydroxamates: Substituent Effects on Reduction Potentials

P. GHOSH and A. CHAKRAVORTY*

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta- 700 032, India

Received June 24.1981

The hydroxamate function is the active site of many siderophores $[1, 2]$. Since iron(III) is bound much more strongly than iron(I1) by this function, it is speculated that reduction may precede release from hydroxamate siderochromes [1]. Hence the current interest $[3, 4]$ in redox properties of such species and model compounds. We report here the first systematic study of substituent effects on redox

potentials of a whole group of siderochrome models of type 1. The red to brown crystalline complexes (Table I) were obtained by reacting hydroxamic acids with iron(III) chloride or tris(acetylacetonato)iron-(III). These were characterised by elemental analysis, IR and UV spectra and magnetic moment data (μ_{eff} , 5.85-5.99 BM). The complexes *If-lh, lj, lk, lm,* are new [3,5].

Cyclic voltammetry of 1 was generally performed at hanging mercury drop electrode (HMDE) in acetonitrile (for $R' = H$ complex dimethylformamide was used due to solubility reasons) with tetraethylammonium perchlorate (TEAP) as the supporting electrolyte. Representative voltammograms obtained with Princeton Applied Research 370-4 Electrochemistry System [6] are in Fig. 1. Relevent data are in Table I. Meaning of symbols are: E_{298}^0 , formal potential; $E_{pc}(E_{pa})$, cathodic (anodic) peak potential; ΔE_{p} , peak-to-peak separation; i_{pc}(i_{pa}), cathodic (anodic) peak currents; SCE, saturated calomel electrode. The Hammett constant σ (para substituent) has values $[7]$: OH, -0.37; OMe, -0.27; Me, -0.17; H, 0.00; Cl, $+0.23$ and NO₂, $+0.78$.

Fig. 1. Cyclic voltammograms of three complexes (concentration $\sim 10^{-3}$ M; scan rate 100 mV s⁻¹) in acetonitrile (0.1 M TEAP); for clarity only a part of the scan is shown in each case.

TABLE I. Cyclic voltammetric Data.^{a,b}

NO.	X	\mathbf{R}'	$-E_{\rm pc}(V)$	$E_p(mV)$	$-E_{298}^{0}(V)$
la	$-NO2$	Н	0.925		
1b	$-CI$	Н	0.995		
1c	-- H	Н	1.020		
1d	– Me	н	1.060		
1 _e	-OMe	Н	1.105		
lf	$-OH$	н	1.105	$\overline{}$	
lg	$-NO2$	Me	0.845	65	0.812
1 ^h	$-Cl$	Me	0.950	65	0.917
li	–H	Me	1.010	70	0.975
1 j	$-Me$	Me	1.055	75	1.017
1k	$-One$	Me	1.060	65	1.027
$_{ll}$	$-NO2$	Ph	0.800	70	0.765
1 _m	$-C1$	Ph	0.905	65	0.872
ln	-H	Ph	0.946	68	0.912
1o	-Me	Ph	0.968	80	0.928
1 _p	$-OMe$	Ph	0.985	65	0.952

aFor complexes *la-If* solvent is dimethylformamide (0.1 M in TEAP) and for others it is acetonitrile $(0.1 \, M \, \text{in} \, \text{TEAP})$; reference electrode, SCE; temperature 298 K. b Measurements were made in the scan rate rang $50-500$ mVs⁻¹; the reported date corresponds to 100 mV s^{-1} .

All complexes except those with $R' = H$ (see below) display a cyclic response having $i_{pc}/i_{pa} \approx 1$ in the range 0.7 to 1.1 V with ΔE_p of 60-80 mV. The presence of an exactly or nearly reversible oneelectron couple (1) is indicated.

$$
l + e^- \Longleftrightarrow 2 \tag{1}
$$

^{*}Author to whom correspondence should be addressed.

Addition of excess 2,2'-bipyridyl (good affinity for iron(II)) to the electrochemical cell does not effect the voltammogram in any way. Evidently 2, which is the anionic iron(II) analogue of I , does not release the metal ion immediately on formation even in the presence of 2,2'-bipyridyl. In fact colourless solutions of 2 can be produced coulometrically although their isolation in the pure state remains to be achieved.

The E_{298}^0 values (Table I) calculated as the average of E_{pa} and E_{pe} are sensitive to both X and R'. For a given R', greater the electron withdrawing power of the substituent X, higher is the E_{298}^0 . In fact E_{298}^0 correlates linearly with 3σ (the factor 3 appears since I is a tris-complex) of X (Fig. 2). The $R' = Me$ and R' = Ph lines are nearly parallel but the former is placed above the latter-reflecting the systematically higher electron donating power of Me. The E_{298}^0 - σ linearity can be expressed by eq. (2) where ΔE_{298} is the shift of E_{298} from the standard complex (X = H) and ρ is the reaction constant [8].

$$
E_{298}^0 = 3\sigma\rho \tag{2}
$$

Fig. 2. Linear $E_{298}^0 - 3\sigma$ plots; the solid lines are least square fitted.

Experimental ρ values are R' = Me, 0.07 and R' = Ph, 0.06 V. The value of *p* depends largely on the number of bonds (t) separating the para substituent X from the metal. In *I* we have $t = 7$. While example of $t = 6$ $(\rho > 0.1 \text{ V})$ are relatively common [9, 10], cases with

 $t = 7$ are rare and the present work probably constitutes the most extensive study done to date on $t = 7$ [10]. In certain triazene-1-oxide iron(III) complexes whose t can be made either 6 or 7, values are: $t = 6, 0.14$ V and $t = 7, 0.08$ V [9].

In $R' = H$ complexes the anodic response is systematically absent. The origin of this behaviour which has been reported earlier [4] for the complex *lc* in acetone is not clear. In the absence of reliable E_{298} values, the E_{nc} – 3*0* correlation was tried here. An excellent linear relationship with $\rho = 0.05$ V resulted.

Acknowledgements

Financial help received from the Department of Science and Technology, Government of India, New Delhi, India, is gratefully acknowledged.

References

- J. B. Neilands (ed.), 'Microbial Iron Metabolism', Academic Press, New York, 1974.
- K. N. Raymond, *Adv. Chem Ser., 162, 33 (1978).*
- K. Abu-Dari, S. R. Cooper and K. N. Raymond, *Znorg. Chem.. 1%* 3394 (1978): C. J. Carrano. S. R. Coooer nd K. N. Raymond, *J. Am. Chem. Soc., 101,* 599 (1979).
- K. S. Murray, P. J. Newman, B. M. Gatehouse and D. T. Taylor, *Aust. J. Chem.,* 31, 983 (1978);D. J. Brockway, K. S. Murray, P. J. Newman, J. *Chem. Sot Dalton Trans.,* 1112 (1980).
- L. M. Epstein and D. M. Straub, *Inorg. Chem., 8, 453 (1969);* J. P. C. Jaimini and N. C. Sogani, Z. *Naturforschung.,* 22, 922 (1967); B. Chatterjee, *Coord. Chem Rev., 26. 263 (1978): S. C.* Shome. *Analyst. 75. 27* (1950). ' .' , .,
- A. R. Chakravarty and A. Chakravorty, *Inorg. Chem, 20,* 6 *275 (1981).*
- $\boldsymbol{7}$ L. P. Hammett, 'Physical Organic Chemistry', 2nd Ed., McGraw-Hill, New York, N. Y., 1970.
- P. Zuman, 'Substitution Effects in organic polarography' Plenum Press, New York, N. Y., 1967.
- C. V. Senoff, *Coord. Chem. Rev., 32,* 111 (1980); G. L. K. Hoh, W. E. McEwen, J. Kleinberg, J. Am. Chem. Soc., 83, 3946 (1961); S. P. Gubin,Pure *AppL* Chem., 23,463 (1970); F. A. Walker, D. Beroiz, K. M. Kadish, J. *Am. Chem Sot., 98, 3484 (1976).*
- 10 R. N. Mukherjee, 0. A. Rajan and A. Chakravorty, to be published.